

DML-CZ: The Objectives and the First Steps

Jiří Rákosník, Petr Sojka, Martin Šárfy

CMDE2006, Aveiro, 15-18 August 2006

Project

The Czech Digital Mathematics Library

- The aim: to ensure availability of mathematical literature which has been published throughout history in the Czech lands, in digital archival form
- Funded by: the Academy of Sciences of the Czech Republic within the national R&D programme "Information Society"
- Period: 2005–2009
- Estimated extent: 150–200 thousand [digitized] pages

Partners

- Mathematical Institute AS CR (Prague)
 project co-ordinator, selection & preparation of materials for digitization, IPR
 and copyright issues, operation and maintenance of the developed DML-CZ
- Institute of Computer Science, Masaryk University (Brno) technical integration, development of the digital library, coordination of metadata provision and incorporation of the DML-CZ into the WDML
- Faculty of Informatics, Masaryk University (Brno)
 OCR processing, techniques for searching and presenting digital documents, presentation formats and relevant technology development and testing
- Faculty of Mathematics and Physics, Charles University (Prague)
 user requirements, metadata specifications and linkage to Zentralblatt MATH
 and Mathematical Reviews
- Library AS CR (Prague)
 digitization, OCR, storage and presentation of the digitized content
 within the Academy of Science framework

Workflow corrections Article article Fine+Infty plain-text metadata autodetection, full-text, references metadata, Reader .tex/.ocr full-text, .xhtml references scan MR article page ranges, (3a) Zbl (6a) MR and Zbl links, AuthorityDB splitting issue **3b** into articles handmade **Contents** corrections **7**a 5 editor **7b** corrections serial metadata Journal ISSN, ... **8c 7c** .dml **8b** creation corrections publication Article of PDF systems: Kramerius,

DSpace, ...

Test bed: Czechoslovak Math. J.

- 1951–1991 classical typesetting (almost 30 000 pages), since 1992 TeX
- multilingualism: Czech, Slovak, Russian, English, German, French, Italian
- the first two volumes published simultaneously in Czech, Russian and multilingual versions
- free-hand drawings, graphic figures, tables and photographs

Proof. Let \hat{K} be a cube, $\hat{K} \subseteq \hat{G}$; put $K = \varphi^{-1}(\hat{K})$. According to theorem 50 we have $K \in \mathfrak{A}$ and it follows from theorem 24 that

$$P(K, v) = \iint_K f(x) \, \mathrm{d}x \,. \tag{89}$$

The functional determinant T of the mapping $\psi = \varphi^{-1}$ fulfils the relation $T(\varphi(x))$. det M(x) = 1, so that

$$\iint_{K} f(x) \, \mathrm{d}x = \iint_{\hat{K}} f(\psi(y)) \cdot |T(y)| \, \mathrm{d}y = \iint_{\hat{K}} f(y) \, \mathrm{d}y . \tag{90}$$

From theorem 50 (and relation (86)) we see that $P(K, v) = P(\hat{K}, \hat{v})$; relations (89), (90) show therefore that $P(\hat{K}, \hat{v}) = \int_{\hat{K}} \hat{f}(y) \, dy$, which completes the proof.

Remark. The reader may compare this paper with [6].

REFERENCES

- V. Jarník: Diferenciální počet, Praha 1953.
- [2] V. Jarnik: Integrální počet II, Praha 1955.
- [3] J. Mařík: Vrcholy jednotkové koule v prostoru funkcionál na daném polouspořádaném prostoru, Časopis pro pěst. mat., 79 (1954), 3-40.
- [4] Ян Маржик (Jan Mařík): Представление функционала в виде интеграла, Чехословацкий мат. журнал, 5 (80), 1955, 467—487.
- [5] J. Mařík: Plošný integrál, Časopis pro pěst. mat., 81 (1956), 79-82.
- [6] Ян Марэкик (Jan Mařík): Заметка к теории поверхностного интеграла, Чехословацкий мат. журнал, 6 (81), 1956, 387—400.
- [7] S. Saks: Theory of the integral, New York.

Резюме

ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ

ЯН МАРЖИК (Jan Mařík), Прага.

(Поступило в редакцию 10/X 1955 г.)

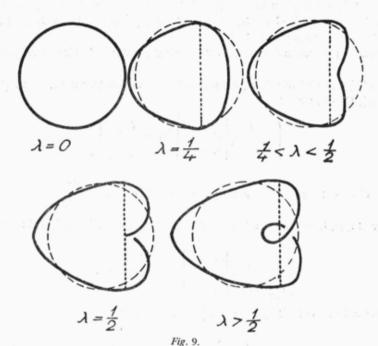
Пусть m — натуральное число; пусть E_m — m-мерное евклидово пространство. Для всякого ограниченного измеримого множества $A \subset E_m$ положим $\|A\| = \sup_A \sum_{i=1}^m \frac{\partial v_i(x)}{\partial x_i} \, \mathrm{d}x$, где v_1, \ldots, v_m — многочлены такие, что $\sum_{i=1}^m v_i^2(x) \le 1$ для всех $x \in A$. Пусть $\mathfrak A$ — система всех ограниченных измеримых множеств A, для которых $\|A\| < \infty$. Теорема 18 тогда утверждает: H усть $A \in \mathfrak A$; пусть D — граница мно жества A. Тогда на системе $\mathfrak B$ всех борелевских подмножеств множества D существует мера p и на

Доказательство. Если $S-L^*$ имеет только один элемент, то этим элементом является неизбежно e_r . Этот элемент сам по собе образует группу. Следовательно, можно ограничиться случаем, что $S-L^*$ имеет больше чем один элемент. В этом случае $S-L^*$ является полугруппой в силу леммы 5.

По лемме 8 существует L^* и M^* , и имеет место $M^* \subseteq L^*$. По теореме 5,2 есть $L^* = M^*$, и $S - L^*$ — слева простая полугруппа; так как e_r ϵ $S - L^*$, имеет эта слева простая полугруппа идемпотент. Значит, в силу теоремы 1,6, $S - L^*$ является соединением непересекающихся изоморфных групп.

Теорема 6,2. Пусть полугруппа S имеет двусторонюю единицу e. Пусть имеет хоть один двусторонний идеал + S. Пусть S/M^* имеет хоть один минимальный левый идеал. Тогда $S-M^*$ является группой.

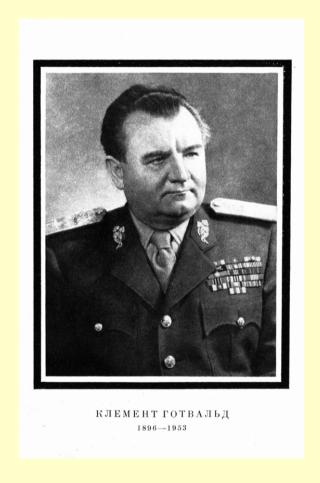
Доказательство. Согласно лемме 8, существуют при наших предположениях идеалы M^* , R^* , L^* и имеет место $M^* \subset R^* \cap L^*$. Разностная полугруппа S/M^* является простой полугруппой с нулем и имеет двусторонюю единицу е. По предположению существует хоть один минимальный левый идеал из S/M^* . Подобно, как в начале доказательства теоремы 4,1, покажем, что никакой левый идеал из S/M^* не может быть нильпотентным. Следовательно, по теореме 1,4, S/M* покрыто суммой своих минимальных левых идеалов. Но е не может входить ни в какой левый идеал $+ S/M^*$. Значит, в S/M^* не содержится никакой левый идеал $\neq [0]$ а $\neq S/M^*$. Но далее имеет место: простая полугруппа, имеющая хоть один миимальный левый идеал и хоть один идемпотент $e \, \neq \, 0$, имеет также по меньшей мере один (не нильпотентный) минимальный правый идеал (см. [3], теорема 7,2). Значит, S/M^* является также соединением минимальных правых идеалов. Так как е не может принадлежать никакому правому идеалу $+ S/M^*$, то и в S/M^* не содержится никакой правый идеал $\neq [\bar{0}]$ и $\neq S/M^*$. Поэтому, в силу следствия 1,2в, S/M^* является группой с нулем. Значит, $S - M^*$ есть группа, чтд.

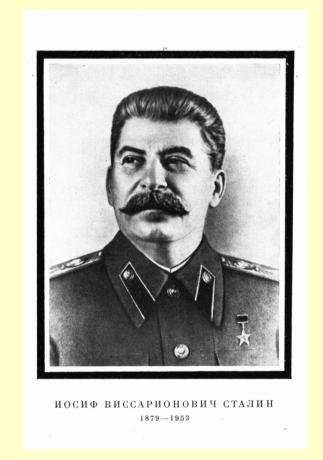

ЛИТЕРАТУРА

- Clifford A. H.: [1] Semigroups containing minimal ideals, Amer. J. Math. 70 (1948), 521-526. — [2] Semigroups without nilpotent ideals, Amer. J. Math. 71 (1949), 834-844.
- Green J. A.: [1] On the structure of semigroups, Ann. of Math. 54 (1951), 163-172.
- Schwarz Št.: [1] О максимальных идеалах в теории полугрупп, I, Чехословацкий математический журнал, т. 3 (78), 1953, 139—153. [2] Структура простых полугрупп без нуля, Чехословацкий математический журнал, т. I (76), 1951, 51—65. [3] О полугруппах, имеющих ядро, Чехословацкий математический журнал, т. I (76), 1951, 259—301.

La torsion $\tau = \Delta/H^2$ peut être discontinue en un point (t, λ) où A = B = C = 0, donc $\varrho = 0$. C'est ce qui arrive pour $\lambda = \frac{1}{4}$, t = 0. D'ailleurs, pour $\lambda = \frac{1}{4}$ on retrouve la courbe non-orientable d'ordre 2 que nous avons déjà présentée au No. 3. On doit remarquer que la torsion τ reste bornée sur cette courbe $\lambda = \frac{1}{4}$, mais $\tau(t, \lambda)$ n'est pas bornée au voisinage du point t = 0, $\lambda = \frac{1}{4}$. En effet, en trouve

$$\tau = \frac{6\lambda^2[(4\lambda - 1) + (\cos t - 1)(4\lambda - 2\cos t - 2)]}{(4\lambda - 1)^2(5\lambda^2 - 4\lambda + 1) + (\cos t - 1)[12\lambda^2(\lambda^2 + 3)(\cos t + 1) - 4\lambda(3 + 26\lambda^2)]}$$


et l'on voit que pour $t \to 0$, $\lambda \to \frac{1}{4}$ la limite de ce rapport dépend de $\lim \frac{\cos t - 1}{4\lambda - 1}$; cette limite est infinie si $\lim \frac{\cos t - 1}{4\lambda - 1} = 0$.


On a K=0 pour $0 \le \lambda < \frac{1}{4}$ et K=1 pour $\frac{1}{4} < \lambda \le 1$, et ce saut est dû à la discontinuité de τ pour $\lambda = \frac{1}{4}$. Ce résultat est général:

Si C_1 et C_2 sont deux noeuds pour lesquels K prend des valeurs de parité différente $(K_2 - K_1 = 2h + 1)$, pendant toute déformation continue (les dérivées des coordonnées jusqu'à l'ordre 3 étant continues) de C_1 en C_2 la torsion $\tau(s, \lambda)$ passe nécéssairement par un point de discontinuité.

Scanning

- Digitization Center of the Library AS CR
- Zeutschel scanners OS 7000 (90 A4 pages per hour at 600 DPI)
- grey scale, 600 (644) DPI, 4~bit in TIFF
- BookRestorer (i2S, France) for the graphical improvements of the scanned pages – mainly cropping, binarization and straightening lines
- the first OCR (all but mathematics): ABBYY FineReader engine integrated in the production system Sirius (Elsyst Engineering, CR)
- automated creation of minimal metadata with the aid of pre-defined models

- 1. Sorting of the scanned page pictures into the hierarchical Journal-Volume-Issue directory structure
 - done implicitly during the scanning process and storage of the files in an appropriate directory structure

CMDE2006 11 / 23

- 2. Application of advanced OCR techniques based on the InftyReader software for processing of maths
 - two runs:

details will be given by Petr Sojka in his talk

- language detection on the paragraph level
- page number detection (sometimes page number missing)
- if OCR does not detect page number, the scan is not matched automatically – has to be done manually

3. Creation of the initial list of papers in the journal issue

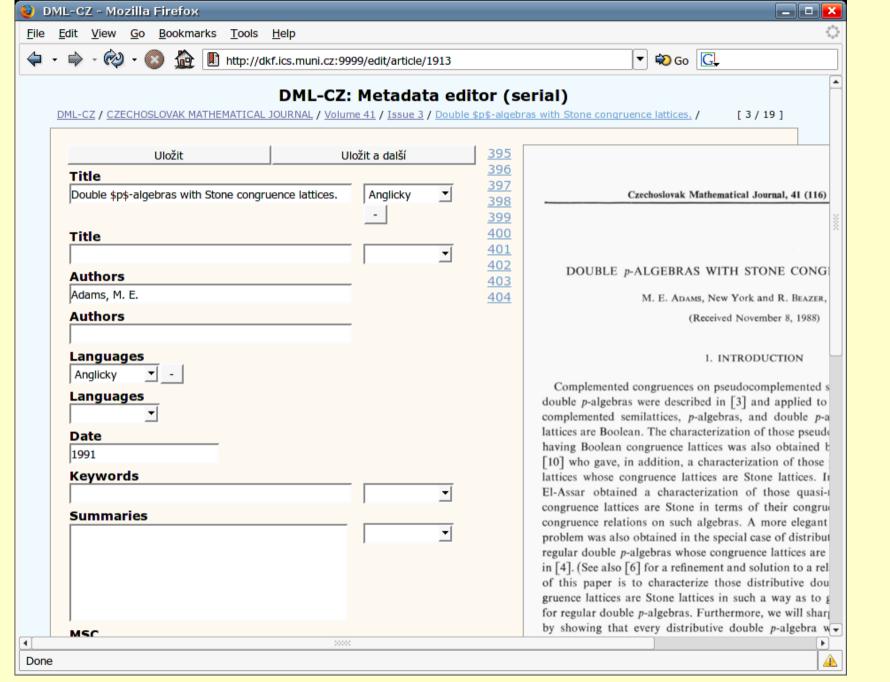
- exploitation of metadata from existing databases
- location of beginnings and ends of papers by means of OCR
- identification of contents page and its items by means of OCR

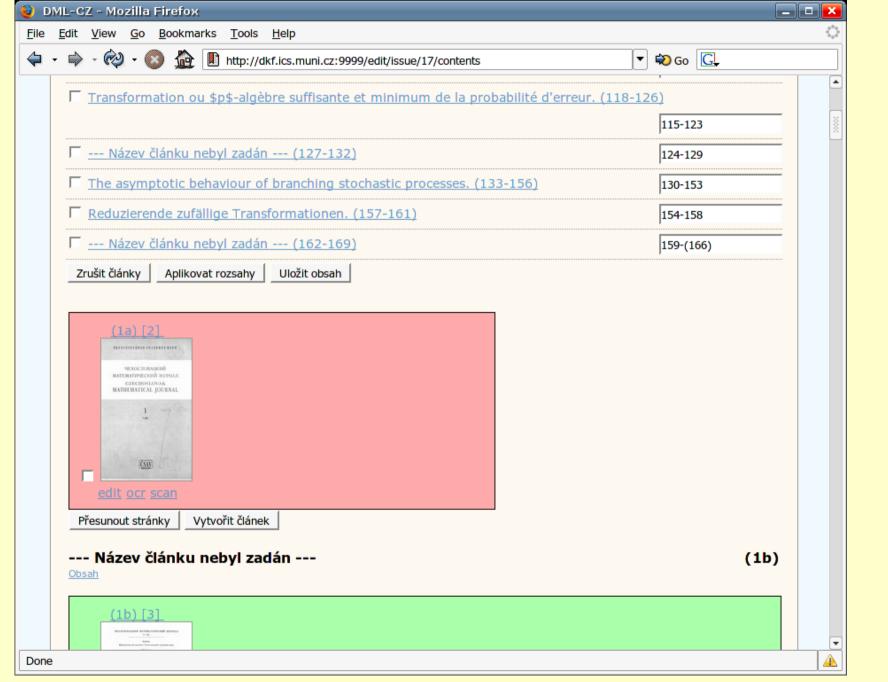
This is very essential for further steps.

- OCR may cause a false division of a paper into parts
- databases are not absolutely reliable (e.g. vacates)
- identification of contents page may be difficult, so far not solved

4. Auto detection of descriptive metadata from external databases and/or from OCR

- some of them are obtained by OCR already during the scanning phase
- used in the next step for control


Problems (particularly with references):


- identification of the item beginning, separation of items and of their elements, finding of the URL, ...
- multilingualism (References, Bibliography, Bibliographie,
 Literaturverzechnis, Littérature, Literatura, Литература)

5. Manual revision of the list of papers and articles content

- crucial for the further steps in the workflow
- done manually with the help of the Metadata Editor that enables
 - visual control of page images
 - paper preview
 - shuffling pages within a paper and between papers
 - cancellation of a badly identified paper and constitution of a new one
 - identification of non-matematical "papers" (editorial, contents)
 - removal of pages without content
 - ...

6. Manual revision of descriptive metadata

- important for the quality of the DML, not for the workflow
- done also with the Metadata Editor

- authors' names
 - transliteration
 - who decides Zbl, MR, authority basis?
 - examples: Zakharov/Zaharov, Solomencev/Solomentsev, Nikolskii/Nikol'skii/Nikol'skij, ...
- missing MSC
- **–** ...

7. Generating PDF files on the article level

- double-layer PDF enabling search
- generated using the list of papers and corresponding page numbers
- we do not consider DjVu (PDF from 6.0 supports compression algorithm JBIG2)

CMDE2006

8. Export of papers and metadata into publication systems

- to decide what system to use
 - Kramerius
 - DSpace
 - a specially developed one?
- to incorporate the DML-CZ into the WDML

IPR issues

- according to the Czech law the electronic version of a printed document is considered a truly new document → special author's permission is required
- therefore, the electronic versions should not be displayed on a public net
- to negotiate with publishers/distributors (moving window, presentation of documents within this window, ...)

Further steps

- to solve the problems
- to digitize further literature
 - Applications of Mathematics, Kybernetika, couple of others
 - conference proceedings, textbooks, theses
- to handle the born-digital material
- to process the material digitized in Göttingen
- to process the Slovak journals
- to cooperate with other digitization initiatives
 - OCR maths
 - indexation and search in maths
 - classification
 - reference linking
 - we will be happy to share our experience and developed tools

Optimism

A: Things can't go any worse.

B: They still can.

Question: Who is optimist and who is pesimist?

In any way, I am optimist.

http://dml.muni.cz/